skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Nourse, W. R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Nourse, W. R., Szczecinski, N. S., & Quinn, R. D. (2023, July). A Synthetic Nervous System for on and Off Motion Detection Inspired by the Drosophila melanogaster Optic Lobe. In Conference on Biomimetic and Biohybrid Systems (pp. 364-380). Cham: Springer Nature Switzerland. 
    more » « less
  2. Leg coordination is important for walking robots. Insects are able to effectively walk despite having small metabolisms and size, and understanding the neural mechanisms which govern their walking could prove useful for improving legged robots. In order to explore the possible neural systems responsible for inter-leg coordination, leg positional data for walking fruit flies of the species Drosophila melanogaster was recorded, where one individual leg was amputated at the base of the tibia. These experiments have shown that when amputated, the remaining stump oscillates in a speed-dependent manner. At low walking speeds there is a wide range of possible stump periods, and this variance collapses down to a minimum as walking speed increases. We believe this behavior can be explained by noisy pattern generation networks (CPGs) within the legs, with intra-leg load feedback and inter-leg global signals stabilizing the network. In this paper, this biological data will be analyzed so that a simplified neuromechanical model can be designed in order to explain this behavior. 
    more » « less